Image Guided Surgery for Medialization Laryngoplasty

Ge Jin D.Sc.
Research Scientist, Department of Computer Science

James K. Hahn, Ph.D.
Professor and Chair, Department of Computer Science
Director, Institute for Biomedical Engineering
The George Washington University

© 2007 Institute for Biomedical Engineering

- $2.8 Million R01 grant from NIH
- School of Medicine and Health Sciences
 - Department of Surgery
 - Steven Bielomowitz
 - Department of Anatomy and Regenerative Biology
 - Raymond Walsh
- School of Engineering and Applied Science
 - Department of Computer Science
 - James Hahn, Ge Jin
 - Department of Mechanical and Aerospace Engineering
 - Rajat Mittal

Laryngoplasty
- Surgical procedure designed to restore voice to patients with vocal cord paralysis and paresis
- Implant patient-specific support through window cut in the thyroid cartilage
- Present
 - Plan optimal size, shape, location by experience and intuition
 - Execution of cut guessed by looking at pre-operative CT plus laryngoscope

Computer Aided Surgery
- Surgery planning
 - Help the surgeon decide what to do where
- Image guidance
 - Help the surgeon perform procedure by giving additional visual guidance
- Robotics
 - Help the surgeon perform procedure using robots
Image-guided Surgery
- Old way: cut then see
 - Purely based on experience
- New way: see then cut
 - "see" done using MRI/CT/Ultrasound, etc.

Image-guidance
- We have 3-D information from pre-operative CT
 - "Virtual patient"
- To cut real patient while looking at virtual patient
 - Two needs to be "registered"
- In effect, give surgeon x-ray vision to determine what lies under the tissue (thyroid cartilage)

Image-guided Laryngoplasty
- Acquiring virtual patient
 - Preoperative CT
- Intraoperative registration of virtual to real patients
 - Computer vision-based registration using shape of thyroid cartilage
- Augmented visualization

Preoperative Virtual Patient
- Marching cube algorithm for iso-surface generation
 - To extract thyroid cartilage surface
Thyroid Cartilage Surface

- NIH Visible Human CT
- Male Cadaver CT
- Female Cadaver CT
- GW Patient CT 1 (Male)
- GW Patient CT 2 (Male)

Intraoperative Surface

- Stereo vision using structured light
 - Known sequence of light patterns
 - Two cameras view reflections
 - Matching pixels from same point on surface used to identify 3D location
 - Cloud of points define surface

Registration using shape of thyroid cartilage

- Registration of two surfaces from pre- and intra-operative stages
 - Match every point in M1 to the closest point in the M2
 - Assume that M1 and M2 is rigid object
 - \[M2 = R \cdot M1 + T \]
 - Compute R and T that minimize
 - ICP based shape matching
Cadaver Study

- Experiment with dissected male larynx
 - Left: Photo, Right: 3D Surface from CT
- ICP based registration
 - Before (left) and After (right)
 - RMS Error: 0.891mm
- Full body scan with structured light on cadaver
 - Left: Photo, Right: 3D points

Visualization

- Augmented reality
 - Enhance real view (intra-operative) with registered virtual view (pre-operative)
- 3 types of information
 - 2D preoperative laryngoscope
 - 3D preoperative CT
 - 2D intraoperative surface view
- Projective texture mapping of 2D views on preoperative 3D isosurface

Intraoperative Visualization Interface

- Visualization
Future Work

- Additional cadaveric studies
- Clinical usability
- Clinical trials
- Extension of computer vision-based image-guided procedures to other domains
 - Laparoscopic surgery
 - General open surgery